How Far (MCQ)

1.	The reversible reaction of nitrogen and hydrogen to form ammonia is shown below.			
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$			
	In the equilibrium mixture, the partial pressure of N_2 is 18.75 MPa and the partial pressure of H is 2.50 MPa. The total pressure is 25 MPa.	2		
	What is the value of K_p , in MPa ⁻² ?			
	A 1.2 × 10 ⁻⁴ B 0.048 C 0.075 D 21			
	Your answer	[1]		
2.	Which statement(s) is/are correct when a catalyst is added to a system in dynamic equilibrium? 1 The rates of the forward and reverse reactions increase by the same amount. 2 The concentrations of the reactants and products do not change. 3 The value of <i>K</i> _c increases	?		
	5 The value of N _c increases			
	A 1, 2 and 3 B Only 1 and 2 C Only 2 and 3 D Only 1			
	Your answer	[1]		

[1]

3.	3. The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below.			
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$			
	An equilibrium mixture contains 2.4 mol SO_2 , 1.2 mol O_2 and 0.4 mol SO_3 . The total pressure is 250 atm.			
	What is the partial pressure of SO ₃ ?			
	 A 15 atm B 25 atm C 100 atm D 200 atm 			
	Your answer	[1]		
4.	A mixture of N_2 and O_2 gases has a total pressure of 1.42 atm. The mole fraction of N_2 is 0.700. What is the partial pressure, in atm, of O_2 in the mixture?			
	A 0.211 B 0.426 C 0.493 D 0.994			
	Your answer [1]			
5.	Ammonia, NH3, is formed in the reversible reaction below. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$			
	A mixture at equilibrium contains 0.320 mol N_2 , 0.960 mol H_2 and 0.120 mol NH_3 .			
	What is the mole fraction of H₂ in the equilibrium mixture?			
	A 0.070			
	A 0.279			
	B 0.686 C 0.837			
	D 2.06			
	Your answer			

6. The equilibrium system below is set up.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = +14 \text{ kJ mol}^{-1}$

The equilibrium system is compressed at constant temperature.

What is the effect on the value of K_c and the amount, in moles, of CH₃OH?

	K c	Amount in moles of CH₃OH
Α	increases	increases
В	decreases	decreases
С	no change	no change
D	no change	increases

Your answer	

[1]

7. Two students set up the equilibrium system below.

$$CH_3COOC_2H_5(I) + H_2O(I) \rightleftharpoons C_2H_5OH(I) + CH_3COOH(I)$$

The students titrated samples of the equilibrium mixture with sodium hydroxide, NaOH(aq), to determine the concentration of CH₃COOH.

The students used their results to calculate a value for K_c .

The students' values for K_c were different.

Which of the reason(s) below could explain why the calculated values for K_c were different?

- 1: Each student carried out their experiment at a different temperature.
- 2: Each student used a different concentration of NaOH(aq) in their titration.
- 3: Each student titrated a different volume of the equilibrium mixture.
 - A. 1, 2 and 3

 - B. Only 1 and 2 C. Only 2 and 3 D. Only 1

Your answer	

[1]

8.	NO(g), H ₂ (g), N ₂ (g) and H ₂ O(g) exist in equilibrium:
	$2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$

At room temperature and pressure, the equilibrium lies well to the right-hand side.

Which of the following could be the equilibrium constant for this equilibrium?

- A. $1.54 \times 10^{-3} \text{ mol dm}^{-3}$ B. $6.50 \times 10^2 \text{ mol dm}^{-3}$ C. $1.54 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1}$ D. $6.50 \times 10^2 \text{ dm}^3 \text{ mol}^{-1}$

Your answer	

[1]

END OF QUESTION PAPER

Mark scheme – How Far (MCQ)

Question		n	Answer/Indicative content	Marks	Guidance
1			В	1 (AO 2.6)	
			Total	1	
2			В	1 (AO 1.1)	
			Total	1	
3			В	1 (AO 1.3)	Examiner's Comments This was a very successful multiple choice question for nearly all candidates.
			Total	1	
4			В	1	ALLOW 0.426 in the box
			Total	1	
5			В	1	
			Total	1	
6			D	1	
			Total	1	
7			D	1	
			Total	1	
8			D	1	
			Total	1	